

EHE: Environmental Hydrogen Embrittlement

H from external sources, e.g. Corrosion → H rich environment

Stress corrosion cracking (SCC)

Cathodic hydrogen absorption (CHA)

Page 5

Basic Principles

The basic premise for HE testing is to allow "TIME":

- H Transport
- H assisted cracking

Purpose →

- Production parts, or
- Witness specimens for process control

Environment ->

- Air (IHE)
- Solution, e.g. 3.5% NaCl (EHE)

Page 15

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

Slow Strain Rate (SSR) Test

- Slowly increase the load
- Quantitative method
- · Measures loss of ductility
- Good research Tool

Ociect II	et of matarial	to he tested	
۸			
Acquire	materials		
Manufa	cture test spec	cimens: 35, 39	9, 44, 53 HRC
> 3000		$2 \pm vears$	
> 0000 .		Ziyearo	
Plain carbon			
Plain carbon steels	Alloy steels	Boron steels	Stainless steels
Plain carbon steels 1039	Alloy steels 4340 air melt	Boron steels	Stainless steels A286
Plain carbon steels 1039 1541	Alloy steels 4340 air melt 4340 vac melt	Boron steels 10B21 10B38	Stainless steels A286 PH13-8Mo
Plain carbon steels 1039 1541	Alloy steels 4340 air melt 4340 vac melt 4140	Boron steels 10B21 10B38	Stainless steels A286 PH13-8Mo Aermet 100
Plain carbon steels 1039 1541	Alloy steels 4340 air melt 4340 vac melt 4140 8637	Boron steels 10B21 10B38	Stainless steels A286 PH13-8Mo Aermet 100
Plain carbon steels 1039 1541	Alloy steels 4340 air melt 4340 vac melt 4140 8637 5140	Boron steels 10B21 10B38	Stainless steels A286 PH13-8Mo Aermet 100
Plain carbon steels 1039 1541	Alloy steels 4340 air melt 4340 vac melt 4140 8637 5140 4042	Boron steels 10B21 10B38	Stainless steels A286 PH13-8Mo Aermet 100
Plain carbon steels 1039 1541	Alloy steels 4340 air melt 4340 vac melt 4140 8637 5140 4042 4135 sph ann	Boron steels 10B21 10B38	Stainless steels A286 PH13-8Mo Aermet 100

Coating processes evaluated

~60 processes/conditions tested

- Zn acid chloride barrel
- Zn alkaline (non cyanide) barrel
- Zn/Ni acid chloride barrel
- Zn/Ni alkaline (non cyanide) barrel
- Zn/Ni alkaline (non cyanide) rack
- Zn/Fe alkaline (non cyanide) barrel
- Cadmium cyanide barrel
- Zn phosphate barrel
- Mechanical zinc bulk drum
- Magni 555[®] bulk dip spin
- Dacromet[®] bulk dip spin

Page 4

Summary

- The Zn-Ni plating process induced microcracks and defects in the coating microstructure. Defects expanded during the baking treatment, acting as hydrogen escape pathways.
- Permeability experiments showed that the defect free Zn-Ni coating had superior resistance to hydrogen diffusion
- During the initial stages of plating, the defect free Zn-Ni layer acts as a barrier to hydrogen absorption. During the baking process the defects present in the coating act as a pathway for any hydrogen to diffuse out of the coated steel thereby further minimizing the risk of embrittlement due to plating process.
- From the hydrogen re-embrittlement studies it was shown that Zn-Ni coatings pose minimal risk of hydrogen embrittlement during sacrificial corrosion of the coatings

	Spect	rochemical	Analysis			
	(1/6	porteu as v	. /0)			
		Mill Test Report ⁽¹⁾	Mill Test Report ⁽²⁾	Requirement ASTM A354 Gr BD	ASTM A354 Gr BD Mecha	nical Properties
Aluminum	AI	0.001	0.001			
Carbon	С	0.41	0.41	0.33 -0.55	Yield Strength	115 psi min.
Chromium	Cr	0.98	0.98			
Cobalt	Co	0.007	0.007		Tensile Strength	140 nsi min
Copper	Cu	0.20	0.20		Tenone ou engui	140 por min.
ron	Fe					
Manganese	Mn	0.92	0.92	0.57 min.	Elongation in 2 inches	14% min.
Molybdenum	Мо	0.16	0.16		Poduction in Area	40% min
Nickel	Ni	0.10	0.10		Reduction in Alea	40 /0 11111.
Phosphorus	Р	0.014	0.014	0.040 max.		
Silicon	Si	0.23	0.23		Hardness Rockwell C	31 -39
Sulfur	S	0.034	0.034	0.045 max.		
Titanium	Ti	0.002	0.002			
Fungsten	W					
Vanadium	V	0.030	0.030			
Zirconium	Zr					

	mpa		3 DI	amete		Rous	
			Mechanical Testing				
		Manufacturing	Elongation (%)	Reduction of Area (%)	Fu (ksi)	Hardness Range (+/-)	CVN @ 4C (J)
	ASTM A354BD	-	14% min	40 min	140 min ¹	31-39 ⁴	-
_	2008	-	12.5%-15%	40-50	159-171	26-39	18-24 @ Surface
ation Yea	2010	Vacuum Degassing	14%-17%	40-53	153-158	27-38	49-53 @ Surface
Fabric	2013 (4340)	Vacuum Degassing	19%-21%	55-59	160-163	30-37	>68 @ Center 64–67 @ Surface

	ASTM A354 Grade BD	ASTM A490	SAE J429 Grade 8	ISO 898-1 PC 10.9
Size Range	1/4 and greater	1/2 to 1-1/2	1/4 thru 1-1/2	M1,6 to M39 (~1/16 - 1-1/2 in)
Chemistry	Alloy Steel	Alloy Steel	Anything	Anything
Core Hardness	1/4 - 2-1/2, =< 2-1/2 33-39 HRC, 31-39 HRC	33- <mark>38</mark> HRC	33-39 HRC	320-380 HV 32-39 HRC
Min Tensile	1/4 - 2-1/2, =< 2-1/2 150 ksi , 140 ksi	150 ksi	150 ksi	1040 MPa (~150.9 ksi)
Max Tensile		173 ksi		
Min Yield	1/4 - 2-1/2, =< 2-1/2 130 ksi, 115 ksi	130 ksi	130 ksi	940 MPa (~136.4 ksi)
Proof stress	1/4 - 2-1/2, =< 2-1/2 120 ksi, 105 ksi	120 ksi	120 ksi	830 MPa (~120.5 ksi)
Min. Elongation	14%	14%	12 %	9%
Min Red area	40%	40%	35 %	48%
Charpy Impact			27 J at −20 °C	
X sect. hard. range				
Surface Hardness			58.6 30N (~38.5 HRC)	390 HV (~39.8 HRC)
Carb		F2328, 12.2		Section 9.11
Decarb		F2328, 12.2	ASTM F2328, Class 2	Yes
90% martensite			Yes	Yes
Min Temp temp	800 °F	800 °F (427°C)	425 °C (800 °F)	425 °C
Ref. Temper test			Y	Y
Surface Discont.		ASTM F788 + Mag	ASTM F788	ISO 6157-1 (or 6157-
		particle + 100 %		3)

	mparison of 3" Diameter E2 Rods							
			Mechanical Testing					
		Manufacturing	Elongation (%)	Reduction of Area (%)	Fu (ksi)	Hardness Range (+/-)	CVN @ 4C (J)	
	ASTM A354BD	-	14% min	40 min	140 min ¹	31-39 ⁴	-	
	2008	-	12.5%-15%	40-50	159-171	26-39	18-24 @ Surface	
ation Yea	2010	Vacuum Degassing	14%-17%	40-53	153-158	27-38	49-53 @ Surface	
Fabrica	2013 (4340)	Vacuum Degassing	19%-21%	55-59	160-163	30-37	>68 @ Center 64–67 @ Surface	

ASTM A354

NOTE 2 —Quenched and tempered alloy steel bolts for structural steel joints up through 1-1/2 in. in diameter are covered in Specification A490. Alloy steel bolts, studs, and other externally threaded fasteners (that is, heavy hex-structural bolts over 1-1/2 in., hex bolts, anchor bolts, and countersunk bolts) exhibiting similar mechanical properties to bolts conforming to Specification A490 shall be covered by Grade BD of this specification.

When bolts of Grade BD of this specification are considered for pretentioned applications in excess of 50 % of the bolt tensile strength, the additional requirements of head size, maximum tensile strength, nut size and strength, washer hardness, tests, and inspections contained in Specification A490 should be carefully considered.

NOTE 4—Research conducted on bolts of similar material and manufacture indicates that hydrogen-stress cracking or stress cracking corrosion may occur on hot-dip galvanized Grade BD bolts.

37